metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.52D6, C6.902+ (1+4), (C2×C12)⋊14D4, D6⋊3D4⋊40C2, C12⋊3D4⋊29C2, (C2×D4).230D6, C12.252(C2×D4), (C22×D4)⋊14S3, C24⋊4S3⋊13C2, (C2×D12)⋊57C22, (C2×C6).300C24, C4⋊Dic3⋊78C22, (C22×C4).288D6, C6.147(C22×D4), C2.93(D4⋊6D6), C23.12D6⋊28C2, (C2×C12).545C23, C3⋊6(C22.29C24), (C4×Dic3)⋊42C22, (C2×Dic6)⋊68C22, (C6×D4).271C22, (C23×C6).79C22, C23.26D6⋊33C2, C6.D4⋊39C22, (C22×C6).234C23, C22.313(S3×C23), C23.146(C22×S3), (C22×S3).131C23, (C22×C12).277C22, (C2×Dic3).155C23, (D4×C2×C6)⋊7C2, (C2×C4)⋊6(C3⋊D4), (S3×C2×C4)⋊31C22, C4.97(C2×C3⋊D4), (C2×C4○D12)⋊29C2, (C2×C6).583(C2×D4), (C2×C3⋊D4)⋊28C22, C2.20(C22×C3⋊D4), C22.36(C2×C3⋊D4), (C2×C4).628(C22×S3), SmallGroup(192,1364)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 904 in 334 conjugacy classes, 111 normal (21 characteristic)
C1, C2, C2 [×2], C2 [×8], C3, C4 [×4], C4 [×6], C22, C22 [×2], C22 [×28], S3 [×2], C6, C6 [×2], C6 [×6], C2×C4 [×2], C2×C4 [×4], C2×C4 [×10], D4 [×22], Q8 [×2], C23, C23 [×4], C23 [×10], Dic3 [×6], C12 [×4], D6 [×6], C2×C6, C2×C6 [×2], C2×C6 [×22], C42 [×2], C22⋊C4 [×10], C4⋊C4 [×2], C22×C4, C22×C4 [×2], C2×D4 [×4], C2×D4 [×15], C2×Q8, C4○D4 [×4], C24 [×2], Dic6 [×2], C4×S3 [×4], D12 [×2], C2×Dic3 [×6], C3⋊D4 [×12], C2×C12 [×2], C2×C12 [×4], C3×D4 [×8], C22×S3 [×2], C22×C6, C22×C6 [×4], C22×C6 [×8], C42⋊C2, C22≀C2 [×4], C4⋊D4 [×4], C4.4D4 [×2], C4⋊1D4 [×2], C22×D4, C2×C4○D4, C4×Dic3 [×2], C4⋊Dic3 [×2], C6.D4 [×10], C2×Dic6, S3×C2×C4 [×2], C2×D12, C4○D12 [×4], C2×C3⋊D4 [×10], C22×C12, C6×D4 [×4], C6×D4 [×4], C23×C6 [×2], C22.29C24, C23.26D6, C23.12D6 [×2], D6⋊3D4 [×4], C12⋊3D4 [×2], C24⋊4S3 [×4], C2×C4○D12, D4×C2×C6, C24.52D6
Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C24, C3⋊D4 [×4], C22×S3 [×7], C22×D4, 2+ (1+4) [×2], C2×C3⋊D4 [×6], S3×C23, C22.29C24, D4⋊6D6 [×2], C22×C3⋊D4, C24.52D6
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=d, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >
(2 8)(4 10)(6 12)(13 38)(14 45)(15 40)(16 47)(17 42)(18 37)(19 44)(20 39)(21 46)(22 41)(23 48)(24 43)(25 31)(27 33)(29 35)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 25)(11 26)(12 27)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 37)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 14 7 20)(2 19 8 13)(3 24 9 18)(4 17 10 23)(5 22 11 16)(6 15 12 21)(25 48 31 42)(26 41 32 47)(27 46 33 40)(28 39 34 45)(29 44 35 38)(30 37 36 43)
G:=sub<Sym(48)| (2,8)(4,10)(6,12)(13,38)(14,45)(15,40)(16,47)(17,42)(18,37)(19,44)(20,39)(21,46)(22,41)(23,48)(24,43)(25,31)(27,33)(29,35), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,25)(11,26)(12,27)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,37), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,14,7,20)(2,19,8,13)(3,24,9,18)(4,17,10,23)(5,22,11,16)(6,15,12,21)(25,48,31,42)(26,41,32,47)(27,46,33,40)(28,39,34,45)(29,44,35,38)(30,37,36,43)>;
G:=Group( (2,8)(4,10)(6,12)(13,38)(14,45)(15,40)(16,47)(17,42)(18,37)(19,44)(20,39)(21,46)(22,41)(23,48)(24,43)(25,31)(27,33)(29,35), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,25)(11,26)(12,27)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,37), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,14,7,20)(2,19,8,13)(3,24,9,18)(4,17,10,23)(5,22,11,16)(6,15,12,21)(25,48,31,42)(26,41,32,47)(27,46,33,40)(28,39,34,45)(29,44,35,38)(30,37,36,43) );
G=PermutationGroup([(2,8),(4,10),(6,12),(13,38),(14,45),(15,40),(16,47),(17,42),(18,37),(19,44),(20,39),(21,46),(22,41),(23,48),(24,43),(25,31),(27,33),(29,35)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,25),(11,26),(12,27),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,37)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,14,7,20),(2,19,8,13),(3,24,9,18),(4,17,10,23),(5,22,11,16),(6,15,12,21),(25,48,31,42),(26,41,32,47),(27,46,33,40),(28,39,34,45),(29,44,35,38),(30,37,36,43)])
Matrix representation ►G ⊆ GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
10 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[10,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0],[0,10,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,1,0,0,0,0,12,0,0,0] >;
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 6A | ··· | 6G | 6H | ··· | 6O | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 12 | ··· | 12 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | C3⋊D4 | 2+ (1+4) | D4⋊6D6 |
kernel | C24.52D6 | C23.26D6 | C23.12D6 | D6⋊3D4 | C12⋊3D4 | C24⋊4S3 | C2×C4○D12 | D4×C2×C6 | C22×D4 | C2×C12 | C22×C4 | C2×D4 | C24 | C2×C4 | C6 | C2 |
# reps | 1 | 1 | 2 | 4 | 2 | 4 | 1 | 1 | 1 | 4 | 1 | 4 | 2 | 8 | 2 | 4 |
In GAP, Magma, Sage, TeX
C_2^4._{52}D_6
% in TeX
G:=Group("C2^4.52D6");
// GroupNames label
G:=SmallGroup(192,1364);
// by ID
G=gap.SmallGroup(192,1364);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,675,570,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations